Пятница,
18:00,
|
Спецкурс знакомит студентов с теорией вычислительного обучения(computational learning theory, COLT), исследующей проблему надёжности восстановления зависимостей по эмпирическим данным. Родоначальниками этой теории были советские математики В. Н. Вапник и А. Я. Червоненкис. В 80-е годы эта теория получила широкую мировую известность, и в настоящее время продолжает развиваться. Один из основных вопросов теории COLT — как количественно оценить способность алгоритмов классификации и прогнозирования к обобщению эмпирических фактов. В каких случаях можно утверждать, что общие закономерности, выявленные по частным прецедентам, не окажутся ложными, предрассудками? Как избежать переобучения — ситуации, когда ответы алгоритма удаётся хорошо подогнать под обучающие данные, но на новых контрольных данных они оказываются существенно менее точными? Как управлять обобщающей способностью алгоритма на стадии его построения? Эти и другие смежные вопросы рассматриваются в данном спецкурсе. Цели спецкурса — научить студентов оценивать надёжность алгоритмов обучения; использовать оценки обобщающей способности для разработки более надёжных алгоритмов; применять их для решения прикладных задач классификации, регрессии, прогнозирования. Страница курса: http://vmk.somee.com/Details/542 |