Четверг,
16:20,
|
Первое занятие 17 сентября Целью данного курса является систематическое изучение распределённых файловых систем (таких, как например, Hadoop) как инструмента для создания параллельных реализаций алгоритмов машинного обучения на больших массивах данных. В ходе курса студенты получат навык использования возможностей модели распределённых вычислений MapReduce для параллельных вычислений над очень большими наборами данных в компьютерных кластерах. В ходе курса рассматриваются параллельные реализации таких основных алгоритмов машинного обучения как регрессия, классификация, кластеризация, коллаборативная фильтрация, классификация в метрических пространствах и т.д. Так же в рамках курса студентам будет предложено разработать собственные параллельные реализации алгоритмов восстановления зависимостей. Курс ориентирован на студентов, знакомых с основными концепциями и алгоритмами машинного обучения. Страница курса: http://vmk.somee.com/Details/717 |